Deep learning

Free of cost

by funding

Deep learning can be used to examine large volumes of data for patterns and models. It is therefore often used for object, face or speech recognition. The course explains the methods of deep learning based on neural networks.
  • Certificates: Deep Learning" certificate
  • Examination: Practical project work with final presentation
  • Teaching Times: Full-time
    Monday to Friday from 8:30 a.m. to 3:35 p.m. (in weeks with public holidays from 8:30 a.m. to 5:10 p.m.)
  • Language of Instruction: German
  • Duration: 4 Weeks

Introduction to Deep Learning (approx. 1 day)

Deep learning as a type of machine learning


Fundamentals of neural networks (approx. 4 days)

Perceptron

Calculation of neural networks

Optimization of model parameters, backpropagation

Deep learning libraries

Regression vs. classification

Learning curves, overfitting and regularization

Hyperparameter optimization

Stochastic gradient descent (SGD)

Momentum, Adam Optimizer

Learning rate


Convolutional Neural Network (CNN) (approx. 2 days)

Image classification

Convolutional layers, pooling layers

Reshaping layers, flattening, global-average pooling

CNN architectures ImageNet-Competition

Deep neural networks, vanishing gradients, skip connections, batch normalization


Transfer Learning (approx. 1 day)

Adaptation of models

Unsupervised pre-training

Image data augmentation, explainable AI


Regional CNN (approx. 1 day)

Object localization

Regression problems

Branched neural networks


Methods of creative image generation (approx. 1 day)

Generative Adversarial Networks (GAN)

Deepfakes

Diffusion models


Recurrent neural networks (approx. 2 days)

Sequence analysis

Recurrent layers

Backpropagation through time (BPTT)

Analysis of time series

Exploding and vanishing gradient problems

LSTM (Long Short-Term Memory)

GRU (Gated Recurrent Unit)

Deep RNN

Deep LSTM


Text processing using neural networks (approx. 2 days)

Text preprocessing

Embedding layers

Text classification

Sentiment analysis

Transfer learning in NLP

Translations

Sequence-to-sequence method, encoder-decoder architecture


Language models (approx. 1 day)

BERT, GPT

Attention layers, Transformers

Text generation pipelines

Summarization

chatbots


Deep reinforcement learning (approx. 1 day)

Control of dynamic systems

Agent systems

Training through rewards

Policy Gradients

Deep Q-learning


Bayesian neural networks (approx. 1 day)

Uncertainties in neural networks

Statistical evaluation of forecasts

Confidence, standard deviation

Unbalanced data

Sampling methods


Project work (approx. 3 days)

To consolidate the content learned

Presentation of the project results



Changes are possible. The course content is updated regularly.

Previous knowledge of machine learning and the Python programming language is required.

After the course, you will be familiar with the areas of application of deep learning and how neural networks work. You will understand how neural networks can recognize objects in images and will be able to provide machine learning and document processes.

Computer science, mathematics, electrical engineering and people with a degree in (business) engineering

Deep learning can be used to examine large amounts of data for patterns and models. This is why it is often used in the context of artificial intelligence for facial, object or speech recognition, for example in medical image recognition, text and speech recognition in sales, IT data security or monitoring financial transactions. Specialists with this knowledge can therefore be deployed in a variety of ways and are in high demand on the job market.

Your meaningful certificate provides a detailed insight into the qualifications you have acquired and improves your career prospects.

Didactic concept

Your lecturers are highly qualified both professionally and didactically and will teach you from the first to the last day (no self-study system).

You will learn in effective small groups. The courses usually consist of 6 to 25 participants. The general lessons are supplemented by numerous practical exercises in all course modules. The practice phase is an important part of the course, as it is during this time that you process what you have just learned and gain confidence and routine in its application. The final section of the course involves a project, a case study or a final exam.

 

Virtual classroom alfaview®

Lessons take place using modern alfaview® video technology - either from the comfort of your own home or at our premises at Bildungszentrum. The entire course can see each other face-to-face via alfaview®, communicate with each other in lip-sync voice quality and work on joint projects. Of course, you can also see and talk to your connected trainers live at any time and you will be taught by your lecturers in real time for the entire duration of the course. The lessons are not e-learning, but real live face-to-face lessons via video technology.

 

The courses at alfatraining are funded by Agentur für Arbeit and are certified in accordance with the AZAV approval regulation. When submitting a Bildungsgutscheinor Aktivierungs- und Vermittlungsgutschein, the entire course costs are usually covered by your funding body.
Funding is also possible via Europäischen Sozialfonds (ESF), Deutsche Rentenversicherung (DRV) or regional funding programs. As a regular soldier, you have the option of attending further training courses via Berufsförderungsdienst (BFD). Companies can also have their employees qualified via funding from Agentur für Arbeit (Qualifizierungschancengesetz).

We will gladly advise you free of charge. 0800 3456-500 Mon. - Fri. from 8 am to 5 pm
free of charge from all German networks.
Contact
We will gladly advise you free of charge. 0800 3456-500 Mon. - Fri. from 8 am to 5 pm free of charge from all German networks.