AI Consultant

Free of cost

by funding

Dive into advanced Python programming: learn how to use modules, packages, strings and object-oriented basics. The course also covers databases, web development with Flask and introduces the concepts of machine learning and deep learning, including evaluation and neural networks.
  • Certificates: Certificate "AI Consultant"
  • Additional Certificates: Certificate "PCAP™ - Certified Associate Python Programmer"
    Machine Learning" certificate
    Deep Learning" certificate
  • Examination: Practical project work with final presentations
    Certified Associate Python Programmer (PCAP™) (in English)
  • Teaching Times: Full-time
    Monday to Friday from 8:30 a.m. to 3:35 p.m. (in weeks with public holidays from 8:30 a.m. to 5:10 p.m.)
  • Language of Instruction: German
  • Duration: 12 Weeks

Python Advanced

Modules, packages and error handling (approx. 4 days)

Introduction to Python modules and packages

Importing and using standard and third-party packages

Creating custom modules and packages

Working with sys and os (host platform functions)

Introduction to exceptions and error handling (try, except, finally)

Creating and using self-defined exceptions

Best practices for robust error handling


Artificial intelligence (AI) in the work process

Presentation of specific AI technologies

and possible applications in the professional environment


Strings and OOP basics (approx. 8 days)

Introduction to working with strings

Integrated string methods (split, join, find, replace etc.)

Formatting and processing strings

String slicing and working with regular expressions (RegEx)

Introduction to classes, objects, instance methods and variables

Encapsulation, inheritance and polymorphism

Constructors (__init__) and destructors (__del__)

Inheritance hierarchies and superclasses


In-depth study of object-oriented programming (approx. 2.5 days)

In-depth study of inheritance and polymorphism

Application of magic methods (__str__, __repr__, __eq__, __lt__, etc.)

Properties and decorators in classes

Design patterns: singleton, factory, etc.

List Comprehensions for efficient list processing

Lambda functions and anonymous function writing

Closures and scoping in Python

Understanding and using generators and iterators


Working with files, databases and web development (approx. 2.5 days)

Reading and writing files (CSV, JSON)

Introduction to SQL and connection to SQLite databases

CRUD operations in a database (create, read, update, delete)

Introduction to Flask and creation of a simple web application

Routes and templates in Flask

CRUD applications in Flask (database integration)


Project work, certification preparation and certification exam "PCAP™ - Certified Associate Python Programmer" in English (approx. 3 days)

Machine Learning

Introduction to Machine Learning (approx. 5 days)

Why machine learning?

Application examples

Supervised learning, unsupervised learning, partially supervised learning, reinforcement learning

Examples of data sets

Getting to know data

Training, validation and test data

Viewing data

Making predictions


Supervised learning (approx. 5 days)

Classification and regression

Generalization, overfitting and underfitting

Size of the data set

Algorithms for supervised learning

Linear models

Bayes classifiers

Decision trees

Random Forest

Gradient Boosting

k-nearest neighbors

Support Vector Machines

Conditional Random Field

Neural Networks and Deep Learning

Probabilities


Unsupervised learning (approx. 5 days)

Types of unsupervised learning

Preprocessing and scaling

Data transformations

Scaling training and test data

Dimension reduction

Feature engineering

Manifold learning

Principal component decomposition (PCA)

Non-negative matrix factorization (NMF)

Manifold learning with t-SNE

Cluster analysis

k-Means clustering

Agglomerative clustering

Hierarchical cluster analysis

DBSCAN

Cluster algorithms


Evaluation and improvement (approx. 2 days)

Model selection and model evaluation

Tuning the hyperparameters of an estimator

Cross-validation

Grid search

Evaluation metrics

Classification


Project work (approx. 3 days)

To consolidate the content learned

Presentation of the project results

Deep learning

Introduction to Deep Learning (approx. 1 day)

Deep learning as a type of machine learning


Fundamentals of neural networks (approx. 4 days)

Perceptron

Calculation of neural networks

Optimization of model parameters, backpropagation

Deep learning libraries

Regression vs. classification

Learning curves, overfitting and regularization

Hyperparameter optimization

Stochastic gradient descent (SGD)

Momentum, Adam Optimizer

Learning rate


Convolutional Neural Network (CNN) (approx. 2 days)

Image classification

Convolutional layers, pooling layers

Reshaping layers, flattening, global-average pooling

CNN architectures ImageNet-Competition

Deep neural networks, vanishing gradients, skip connections, batch normalization


Transfer Learning (approx. 1 day)

Adaptation of models

Unsupervised pre-training

Image data augmentation, explainable AI


Regional CNN (approx. 1 day)

Object localization

Regression problems

Branched neural networks


Methods of creative image generation (approx. 1 day)

Generative Adversarial Networks (GAN)

Deepfakes

Diffusion models


Recurrent neural networks (approx. 2 days)

Sequence analysis

Recurrent layers

Backpropagation through time (BPTT)

Analysis of time series

Exploding and vanishing gradient problems

LSTM (Long Short-Term Memory)

GRU (Gated Recurrent Unit)

Deep RNN

Deep LSTM


Text processing using neural networks (approx. 2 days)

Text preprocessing

Embedding layers

Text classification

Sentiment analysis

Transfer learning in NLP

Translations

Sequence-to-sequence method, encoder-decoder architecture


Language models (approx. 1 day)

BERT, GPT

Attention layers, Transformers

Text generation pipelines

Summarization

chatbots


Deep reinforcement learning (approx. 1 day)

Control of dynamic systems

Agent systems

Training through rewards

Policy Gradients

Deep Q-learning


Bayesian neural networks (approx. 1 day)

Uncertainties in neural networks

Statistical evaluation of forecasts

Confidence, standard deviation

Unbalanced data

Sampling methods


Project work (approx. 3 days)

To consolidate the content learned

Presentation of the project results



Changes are possible. The course content is updated regularly.

Basic programming skills in Python are required.

After the course, you will have mastered the principles of object-oriented programming, including classes, inheritance and design patterns in Python. You will be able to apply concepts such as generators, decorators and list comprehensions and analyze and visualize data efficiently. You will also work confidently with files and databases and create basic web applications with Flask, including a full CRUD application.

You also have relevant knowledge of machine learning and deep learning. You know the most important reasons for using machine learning, areas of application and the various categories and concepts of machine learning. You also understand the areas of application of deep learning and how neural networks work. You will be able to provide machine learning and document processes.

Programming students, science students, economics students, IT students, IT specialists, people with experience in engineering or data analysis and specialists with relevant professional experience.

As an AI Consultant, you can work in areas such as management consulting, data analysis, healthcare and e-commerce by supporting companies in the implementation of AI solutions. You will help to optimize business processes, make data-driven decisions and develop innovative technologies.

Didactic concept

Your lecturers are highly qualified both professionally and didactically and will teach you from the first to the last day (no self-study system).

You will learn in effective small groups. The courses usually consist of 6 to 25 participants. The general lessons are supplemented by numerous practical exercises in all course modules. The practice phase is an important part of the course, as it is during this time that you process what you have just learned and gain confidence and routine in its application. The final section of the course involves a project, a case study or a final exam.

 

Virtual classroom alfaview®

Lessons take place using modern alfaview® video technology - either from the comfort of your own home or at our premises at Bildungszentrum. The entire course can see each other face-to-face via alfaview®, communicate with each other in lip-sync voice quality and work on joint projects. Of course, you can also see and talk to your connected trainers live at any time and you will be taught by your lecturers in real time for the entire duration of the course. The lessons are not e-learning, but real live face-to-face lessons via video technology.

 

The courses at alfatraining are funded by Agentur für Arbeit and are certified in accordance with the AZAV approval regulation. When submitting a Bildungsgutscheinor Aktivierungs- und Vermittlungsgutschein, the entire course costs are usually covered by your funding body.
Funding is also possible via Europäischen Sozialfonds (ESF), Deutsche Rentenversicherung (DRV) or regional funding programs. As a regular soldier, you have the option of attending further training courses via Berufsförderungsdienst (BFD). Companies can also have their employees qualified via funding from Agentur für Arbeit (Qualifizierungschancengesetz).

We will gladly advise you free of charge. 0800 3456-500 Mon. - Fri. from 8 am to 5 pm
free of charge from all German networks.
Contact
We will gladly advise you free of charge. 0800 3456-500 Mon. - Fri. from 8 am to 5 pm free of charge from all German networks.